

5383 PFPD PULSED FLAME PHOTOMETRIC GC DETECTOR

With a significant improvement in signal processing and a 10-fold increase in sensitivity over most traditional FPDs, the the **5383 Pulsed Flame Photometric Detector** makes accurate analysis of sulfur, phosphorus, and other elements easier than ever before. The intuitive, easy-to-use software suite with integrated monitoring and analysis capabilities provides a powerful tool for parameter optimization, data analysis, and more. Reliable and cost-effective, the 5383 PFPD uses significantly less gas than SCDs or FPDs and requires considerably less maintenance.

- Superior sensitivity and increased selectivity for S and P compared to conventional FPDs
- Linear, equimolar response for quick, easy calibrations
- Simultaneous mutually selective chromatograms (e.g., S+C, or S+P) Self-cleaning design eliminates soot formation, or "coking," seen in other sulfur-selective detectors
- Modular design with separate electronics and flow modules
- Better long-term stability and less maintenance than other S-selective detectors, such as SCD/XRF

5383 PFPD PULSED FLAME PHOTOMETRIC DETECTOR SPECIFICATIONS

Detectivity

Sulfur

Phosphorus

ıs

Sensitivity

Sulfur Signal-to-Noise

Drift (S or P)

>300 (at 10 pg S/sec elution rate peak-to-peak noise) <10x peak-to-peak noise in 20 min

<1 pg S/sec

<100 fg P/sec

Selectivity (at Optimum Detectivity Levels)

Sulfur Phosphorus tivity Levels)
>10⁶ S/C
> 10⁵ P/C (selectivity is adjustable with a trade-off in detectivity)

Quadratic in response. Linear to

~3 orders of magnitude.

5 orders of magnitude.

Equimolor ±8% (S, P)

<0.2 sec in S and P

He or H₂ at 40 psig; 99.8% purity or better

(electrolytic grade)

115/230 VAC

approximately 2.4 orders of magnitude. Detector (nonlinear) dynamic range

First order linear over approximately

Detector Linearity

Sulfur

Phosphorus

Response Uniformity

Chromatographic Peak Tailing

Gas Requirements

Carrier

Air Hydrogen

Power Requirements

Computer Requirements

Operating System Communication Ports Minimum Temperature Maximum Temperature Carrier Gas

Typical Gas Consumption

H₂ Air Humidity Altitude Windows® 7, 8 and 10 USB (1) 180 °C 420 °C 5 mL/min maximum flow rate helium; up to 10 mL/min using H₂ carrier gas

40 psig; zero air (CGA grade E)

40 psig; 99.995% purity or better

10-15 mL/min 20-30 mL/min 5-80% relative humidity 2,000m maximum Safety/EMI Certifications

Controller Board Inputs and Outputs

Two Channels (to GC)
One Serial
One Signal In
High Voltage Out
Ignitor Current
S/W HV Protection
Timed Events (from GC Remote Start)
Controller Dimensions

Pneumatics Module Dimensions Pneumatic Control 0-1 V RS-485 Electrometer; PFPD PMT 0-1,000 V 0-3.4 A PMT Protection Autozero, range, attenuation, ignitor, mode or channel (e.g. S, P, C), and record

17.5 cm H x 6 cm W x 25 cm D (6.9" H x 2.4" W x 9.9" D)

17.5 cm H x 6 cm W x 27.5 cm D (6.9" H x 2.4" W x 10.3" H)

EPC-Ready Control utilizes GC electronic flow control of detector gases or manual flow control of detector gases with mass flow controllers and metering valve

Sulfur in Propylene/Propane

Ol Analytical, a Xylem brand 1725 Brannum Lane Yellow Springs, OH 45387

© 2024 Xylem, Inc. 4240-02 1124

